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Abstract
We present results on both the intensity and phase dynamics of the transient non-
linear optical response of a single quantum dot (SQD). The time evolution of the
four wave mixing (FWM) signal on a subpicosecond timescale is dominated
by biexciton effects. In particular, for the cross-polarized excitation case a
biexciton bound state is found. In this latter case, mean-field results are shown
to give a poor description of the non-linear optical signal at small times. By
properly treating exciton–exciton effects in an SQD, coherent oscillations in
the FWM signal are clearly demonstrated. These oscillations, with a period
corresponding to the inverse of the biexciton binding energy, are correlated
with the phase dynamics of the system’s polarization, giving clear signatures
of non-Markovian effects in the ultrafast regime.

1. Introduction

Exciton dynamics experiments are attracting continuous interest because of their suitability to
explore dephasing effects of single exciton and multiexciton complexes [1, 2]. Furthermore,
recent proposals for solid state quantum computing systems [3–7],have stressed the importance
of properly controlling multiexciton coherences. Recently, the non-classical behaviour of
the light emitted from an SQD, photon antibunching in the fluorescence spectrum, has been
observed in the ultrafast regime [8]. Additionally, the search for single photon sources [9]
has triggered experimental interest in transient multiexciton coherences. All of these exciton
based phenomena reflect the importance of interparticle interactions (electrons and holes) and
their couplings to the environment, e.g., phonons. Both coherent and incoherent effects are
experimentally detected. Incoherent effects are related to the system–bath interaction and
from a theoretical point of view they are usually modelled within a Markov approximation.
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Coherent effects are associated with multiple particle correlations and can be observed in the
subpicosecond timescale. Consequently, a detailed understanding of the coherence persistence
at short times is of utmost importance in nanostructure systems.

Time resolved FWM experiments give signatures of particle–particle correlations and
particle–environment interactions. In a typical FWM experiment, two simultaneous excitation
pulses co- or cross-circularly polarized, with wavevectors �k1 and �k2, propagate onto the sample.
A third laser pulse, with wavevector �k3, is sent time delayed at t2 = T . For moderate
excitation intensities, exciton–exciton interaction arises. The time evolution of the third order
polarization P(3)(t, T ) = |P(3)(t, T )|ei�(t,T ) describes the properties of the diffracted light
in the �k3 + �k2 − �k1 direction. At very short times after the excitation, particle correlations
build up. These correlations have been observed using spectral interferometry techniques in
bulk systems [10]. It is also possible to study the polarization phase dynamics itself, �(t, T ).
Moreover, other experiments for measuring P(3), like pump and probe schemes, have also been
performed. In particular in [4] a simple four level model has been used to get the non-linear
optical response (χ(3)) of an SQD. From the frequency spectrum of χ(3), the possibility of
getting exciton entanglement in an SQD has been predicted. However, in that work exciton
correlations were included within a mean field approach (MFA).

Exciton dephasing times (T2) have been well characterized in bulk and quantum well
systems. In particular, ultrafast dynamics experiments, like time resolved speckle analysis,
have been used to get dephasing time information in solids [11–13]. On the other hand, recent
experiments in bulk systems show the build up of many particle correlations in the femtosecond
scale of time [14]. Recently, all of these dynamical phenomena have been observed for first time
in self-assembled QDs using transient FWM spectroscopy [15], where the time integrated FWM
signal oscillates with the biexciton binding energy. Besides that, dephasing mechanism from
optical longitudinal (LO) phonons has been observed in CdSe bulk and quantum dots systems,
showing clearly non-Markovian effects associated to the coupling between carriers and LO
phonons [16]. Due to its atomic-like characteristics, an SQD offers the unique possibility of
manipulating the number of particles and their Coulomb interactions (exciton–exciton (X–X))
with direct consequences on decoherence processes control. Thus, rather long dephasing times
(T2 ≈ 40 ps) have been reported [17–19].

A natural question arises when ultrafast scale of times are involved: what kind of
quasiparticle (free electron–hole pairs, exciton or bound excitons) are dominant? In order
to answer this question we consider the phase space filling (PSF) effect and X–X interactions
on the same footing. Within MFA, the FWM signal shows contributions coming from both PSF
effects as well as renormalized X–X interactions. However, this approximation fails to explain
correlations at very short times. Therefore, MFA should be improved by considering quantum
fluctuation effects to explain transient FWM experiments. In particular, more elaborated
theoretical approaches like the one reported in [20], where a truncation in the hierarchy of
polarization equations of motion to fifth order in the optical electric field is proposed, are
shown to improve MFA results by including four particle correlations. Additionally, some
previous reported works [20, 21] show that in bulk systems a mean-field approach to calculate
the FWM signal gives errors because the exact X–X correlations are neglected.

In the present work, we go beyond previous limitations like few level systems and MFA.
We use a truncation scheme similar to one developed for bulk systems [21], in which the
contribution from exciton and exciton–exciton effects can be split and treated on an equal
footing to any desired order in the optical field [20]. However, the truncation scheme fails
to evaluate exactly the X–X Coulomb interaction due to the intensive computational work
involved in its application to bulk systems. In order to get feasible results, this scheme has
been used mapping the problem to a one-dimensional Hubbard model [21]. In the present
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work we undertake this problem and we include exact X–X correlations in order to find the
non-linear optical signal, intensity and phase dynamics in a realistic model of an SQD in the
ultrafast regime. In section 2, we briefly review the theoretical background on which our results
are based. Section 3 describes the main results of this work. Our conclusions are summarized
in section 4.

2. Theoretical model

Our starting point is the Hamiltonian for a system of electrons and holes in a two-dimensional
parabolic quantum dot excited by external laser pulses

H =
∑
ν,s

Ee
ν,sc†

ν,scν,s +
∑
ν,s

Eh
ν,sh†

ν,shν,s

+
∑

ν,σ (s,s ′)
µeh

ν,σE(t)c†
ν,sh†

ν,s ′ +
∑

ν,σ (s,s ′)
µhe

ν,σE(t)∗hν,s ′ cν,s

−
∑
ν1,ν2,
ν3,ν4

∑
s,s ′

〈ν1, ν2|Ve−h|ν3, ν4〉c†
ν1,sh†

ν2,s ′ hν3,s ′ cν4,s

+ 1
2

∑
ν1,ν2,
ν3,ν4

∑
s,s ′

〈ν1, ν2|Ve−e|ν3, ν4〉c†
ν1,s

c†
ν2,s ′ cν3,s ′ cν4,s

+ 1
2

∑
ν1,ν2,
ν3,ν4

∑
s,s ′

〈ν1, ν2|Vh−h|ν3, ν4〉h†
ν1,sh†

ν2,s ′ hν3,s ′ hν4,s (1)

where c(h)†
ν,s , c(h)ν,s creates and destroys one electron (hole) in the state ν (labelled by

quantum numbers (ne(h), me(h))) with spin s (↑, spin up, ↓, spin-down). Ve−e, Ve−h and Vh−h,
denote electron–electron, electron–hole and hole–hole Coulomb interactions, respectively.
Single particle energies for electrons (holes) are given by Ee(h)

ν,s = (ne(h) + me(h) + 1)ωe(h), with
confinement energies ωe(h) = 1/me(h)l2

e(h) (h̄ = 1), where le(h) is the parabolic confinement
length size of the electron (hole). The set of laser pulses used to excite the SQD is described
by the envelope amplitude E(t) and associated dipole moments µeh

ν,σ which take into account
pulse polarizations. The spins of the electron (s) and hole (s′) determine the corresponding
polarization index σ , i.e., σ = σ(s, s′). By diagonalizing the time independent part of the
Hamiltonian equation (1) (E(t) = 0), the energies and wavefunctions for one and two excitons
in an SQD are obtained, from which the non-linear optical response is calculated.

Exciton and biexciton wavefunctions are given respectively, in terms of non-interacting
electron–hole pairs, as

|n〉X
s,s ′ =

∑
ν1,ν2

�n
ν1,ν2

(c†
ν1,sh†

ν2,s ′)|0〉

|m〉XX =
∑
ν1,ν2,
ν3,ν4

�m
ν1,ν2,ν3,ν4

(c†
ν1,↑c†

ν2,↓ ± c†
ν1,↓c†

ν2,↑)(h†
ν3,↑h†

ν4,↓ ± h†
ν3,↓h†

ν4,↑)|0〉. (2)

|0〉 is the SQD ground state and �n
ν1,ν2

and �m
ν1,ν2,ν3,ν4

are the exciton and biexciton amplitudes,
respectively, which take properly into account the carriers’ spin configuration. In the following
formulae we will stick to the notation of equation (2), where the index n labels an exciton state,
whereas the index m is reserved for the labelling of biexciton states.

In discussing the time resolved spectra,we will be concerned with the situation in which the
SQD is excited by very short laser pulses (δ functions) in resonance with the 1s heavy-exciton
state. Therefore, a large number of single particle states has to be included in the calculation
of one and two exciton spectra. The applicability of the δ-pulses’ limit can be extended to
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typical acoustic periods when interaction with LO phonons can be neglected, compared with
the deformation potential. However, it will be very important in II–VI semiconductors due
to this high enough polar coupling. Our results are related with III–V systems, in which this
coupling is low. In this way, when coherent phenomena coming from the oscillations of exciton
or biexciton–phonon complexes are lost, incoherent phenomena acquire more importance, and
after this time it is well known that a phenomenological model of decoherence, such as the
one we will adopt here, can be used.

We perform our theoretical calculations following a truncation scheme [21] of the Hilbert
space of one exciton and two interacting excitons. After a long algebra it is possible to give
analytical expressions for the transient non-linear optical signal, which is proportional to P(3).
It can be described as the sum of three terms: one representing the PSF (PPSF) contribution,
another corresponding to the MFA term (PMF), and a third related to the X–X contribution
(PF). This last term describes exact four particle correlations and memory effects in terms of
the so-called force–force time correlation function. All these terms can be calculated for an
SQD described by the Hamiltonian equation (1), giving place to expressions similar but not
equal to those of [21] (the differences are due to the confinement geometry of the dot; see the
discussion in the next section). The resulting expressions for each one of these contributions
for an SQD are given explicitly by

PPSF
n1,σ1

(t, T )e(iωx,n1 +�)t = −iαn1,σ1

∑
n0,n2,n3,
σ0,σ2,σ3

αn0,σ0α
∗
n2,σ2

α∗
n3,σ3


(T )
(t)e(iωx,n0 −�)T Cn2,σ2;n3,σ3
n0,σ0;n1,σ1

(3)

where αn,σ is related to the exciton wavefunction at zero relative distance, Cn2,σ2;n3,σ3
n0,σ0;n1,σ1

is the
PSF parameter (for notation details, see [21]) and 
(x) denotes the step function (
(0) = 1).
The MFA contribution can be written as

PMF
n1,σ1

(t, T )e(iωx,n1 +�)t = −iαn1,σ1

∑
n0,n2,n3,
σ0,σ2,σ3

αn0,σ0α
∗
n2,σ2

α∗
n3,σ3

e(iωx,n0 −�)T β
n2,σ2;n3,σ3
n0,σ0;n1,σ1

ωx,n0 + ωx,n1 − ωx,n2 − ωx,n3 + 2i�

× [
(−T )
(t + T )Ax(t, T ) + 
(T )
(t)Ax(t, 0)] (4)

where

β
n2,σ2;n3,σ3
n0,σ0;n1,σ1

=
∑

m

(ωxx,m − ωx,n0 − ωx,n1 )Bσ0,σ1
n0,n1

(m)Bσ2,σ3
n2,n3

(m) (5)

and

Ax(t, T ) = e(−2�+i(ωx,n0 +ωx,n1−ωx,n2 −ωx,n3 ))t − e(2�−i(ωx,n0 +ωx,n1−ωx,n2 −ωx,n3 ))T . (6)

Similarly, the X–X contribution is given by

PF
n1,σ1

(t, T )e(iωx,n1 +�)t = iαn1,σ1

(∑
m

Pn1(m)

)
− PMF

n1,σ1
(t, T )e(iωx,n1 +�)t (7)

where

Pn1(m) =
∑

n0,n2,n3,
σ0,σ2,σ3

αn0,σ0α
∗
n2,σ2

α∗
n3,σ3

Bσ0,σ1
n0,n1

(m)Bσ2,σ3
n2,n3

(m)
e(iωx,n0−�)T (ωxx,m − ωx,n0 − ωx,n1 )

ωxx,m − ωx,n0 − ωx,n1 − i�xx

× [
(−T )
(t + T )Axx(t, T ) + 
(T )
(t)Axx (t, 0)] (8)

with

Axx (t, T ) = e(−�xx +i(ωx,n0 +ωx,n1 −ωxx,m ))t − e(�xx −i(ωx,n0 +ωx,n1 −ωxx,m ))T . (9)
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In equations (5) and (7), m runs over all (bound and unbound) biexciton states. Bound
biexcitonic states are those for which its energy lies below two times the ground state energy
of an exciton. Additionally, β

n2,σ2;n3,σ3
n0,σ0;n1,σ1

and Pn1,σ1(m) take into account the exciton and
biexciton transition weights on the signal produced by the n1 exciton state. The exciton
transition weights B

σi ,σ j
ni ,n j (m) are defined to be the matrix elements 〈0|B̂ni ,σi B̂n j ,σ j |m〉XX of

the product of two nth exciton destruction operators B̂n,σ between the exciton ground state
〈0| and a biexciton state |m〉XX. Finally, all we need is the exciton, ωx,n , and biexciton,
ωxx,m , energies and their respective wavefunctions, which can be numerically obtained to any
desired precision in the SQD case. From these ingredients, the exciton transition weights
can be calculated as Bn0,n1(m) = 〈0|B̂n0 B̂n1 |m〉XX, where the exciton destruction operator
is B̂n,σ = ∑

ν1,ν2
�n

ν1,ν2
cν1,shν2,s ′ (σ = σ(s, s′)) and �n

ν1,ν2
is the nth exciton amplitude

(cf equation (2)). One of the main results of our paper is that, in contrast to an extended
system, for QDs the term PMF

n1,σ1
does not vanish, even in the case of cross-polarized (CP)

excitation. If the dot confinement energies are reduced, in the CP case PMF
n1,σ1

decreases in
magnitude, approaching zero in the limit of zero confinement (extended system). This can
be seen by direct evaluation of the parameter β in equation (5), that gives information on
the strength of the signal as predicted by MFA. Although the β term contains information
about the renormalized biexciton energy, this term is not responsible for oscillations, and only
contributes with an spectral weight given by the B

σi ,σ j
ni ,n j changing the intensity of the FWM

signal.
The total dynamics of excitons and biexcitons comprises the MF and the exact X–

X contributions. The temporal dynamics dependence of PMF (apart from an exponential
damping) is contained in equation (6), where only contributions from differences of exciton
energy levels appear, which are negligible in the case of resonant excitation. On the other
hand, the temporal dependence of the X–X contribution is dominated by energy differences
between two exciton states and one biexciton state, e.g. equation (9). In particular, in the CP
case, a bound biexcitonic state is present, causing oscillations in the signal with a frequency
corresponding to the energy of the bound state.

Exciton and biexciton dephasing rates associated to non-radiative mechanisms are
described (phenomenologically) by � and �xx , respectively. In the following we will
concentrate only in the lowest exciton state, i.e., n1 = n2 = n3 = n4 = 1s with �xx = 2�. In
our model, the dephasing time T2 is defined as the inverse of �xx .

3. Results and discussion

In order to calculate the FWM signal for a typical self-assembled SQD [22, 23], we consider
a In0.5Ga0.5As quantum dot with ε = 12.5, m∗

e = 0.068, m∗
h = 0.2, ωe = 20 meV

and ωh = 5 meV. To guarantee a good convergence for the spectrum of zero total angular
momentum excitons and biexcitons, we diagonalize a 72×72 Hamiltonian matrix for excitons
and a 3250 × 3250 Hamiltonian matrix for biexcitons. The exciton spin is determined by
the circular polarization of the excitation pulses. Further in this work we discuss only the
cross polarization excitation case. With this set of parameters the biexciton binding energy is
−1.27 meV.

As discussed in section 2, the FWM signal clearly depends on T , and on the exciton
and biexciton energies as well as on the transition spectral weights. Excitation pulses create
coherent excitons whose dephasing time (T2) can be monitored by the delayed pulse. As the
time delay increases, the FWM signal decreases, from which T2 can be obtained. With these
ingredients, and considering that more than one electronic excitation can be induced by the
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Figure 1. MFA contribution (β term) as a function of the electron and hole confinement frequencies,
for �xx = 0.125 meV.

laser and four particle correlations occur for times lesser than T2/4, we expect that interference
phenomena appear in the ultrafast timescale. Therefore, the coherent FWM signal and the
phase dynamics give clear signatures of exciton–exciton interactions in the ultrafast regime.
In the following we will not be concerned with T2 determination, which is to be taken as a free
parameter. Pulses with zero time delay, T = 0, will be considered.

In the weak intensity regime both PSF and X–X effects determine the non-linear optical
properties. We will concentrate on these two contributions. PSF contributions to the FWM
signal are only important in the parallel spin exciton case, where X–X effects are negligible,
because a bound biexciton state does not exist at all. By contrast, for the cross polarization
situation we are interested in, PSF effects are vanishing while X–X effects become dominant. It
is important to remark that in extended and isotropic systems the MFA gives a zero contribution
to the FWM signal, because only excited excitons with zero centre of mass momentum
contribute, i.e., (�q = 0) [21]. However, in an SQD this condition can be relaxed due to
the fact that the parabolic potential absorbs the incident momentum, and excitons with centre
of mass momentum different from zero can be excited. This point becomes particularly clear by
considering the mean field parameter β defined in equation (5). Whereas for extended systems
this parameter is exactly zero [21], for an SQD it becomes a function of the confinement
energies ωe(h). The dependence of β on ωe is depicted in figure 1. We consider a constant
relationship between electron and hole confinement lengths, i.e., le = lh. It can be seen that
in the limit of small confinement, i.e., pure two-dimensional systems (ωe,h = 0), β tends to
zero, as it should. This means that the usual condition of (�q 	= 0) for the carriers’ Coulomb
interaction in extended systems is broken in confined systems. We have tested our results
taking a huge set of excitonic states and we found that higher energy states give a negligible
contribution to β.

The phase dynamics and the non-linear optical signal are calculated for different decay
rates. In order to better clarify why MFA is not adequate to describe non-linear optical signals
at small times, we plot in figure 2, separately, the amount of particle correlation contribution to
the FWM signal as described within MFA (equation (4)) and exact X–X effects (equation (7)),
which include memory (non-Markovian)effects, for �xx = 0.125 meV. The usual and simplest
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Figure 2. Absolute values of the MFA contribution (real part of PMF
n1

(t, T )e(iωx,n1 +�)t ) and X–

X contribution (PF
n1

(t, T )e(iωx,n1 +�)t ) to the FWM signal, for �xx = 0.125 meV. Inset: spectral
weight of the biexciton wavefunction. Bound biexciton energy = −1.27 meV. The long-dashed
curve denotes the zero energy.

approximation for this last term yields to the Markov approximation and MFA results. By
contrast, in this work we have performed a full numerical evaluation of X–X effects by
summing over all biexciton states. Hence, we plot the absolute values of both the real part of
PMF

n1,σ1
(t, T )e(iωx,n1 +�)t (MFA term) and the real part of PF

n1,σ1
(t, T )e(iωx,n1 +�)t (X–X term). The

MFA result grows monotonically with t , whereas the X–X result shows beating oscillations
with a period corresponding to Txx = 2πω−1

xx,opp ≈ 5 ps, the biexciton binding energy. As
can be seen, non-Markovian effects arising from exciton–exciton correlations are the main
source of discrepancies between MFA results and the exact ones. This means that ultrafast
spectroscopy in SQDs should register memory effects associated to four particle correlations.

In the inset of figure 2, we show the spectral weight B(m) as a function of biexciton
energy levels (the zero of energy corresponds to twice the single 1s-heavy-exciton energy).
We have only plotted those levels that have total angular momentum Lz = 0. The bound
biexciton level is clearly seen at negative energies. Although unbound biexciton states have
non-negligible spectral weights, the bound biexciton still has a comparable weight. As can
be seen in figure 2, MFA fails to describe properly four particle interactions at very short
times, where particle–particle correlations are important. This term does not oscillate and
only average the exact result. Besides that, the contribution in equation (7) takes into account
a higher degree of correlation going beyond MF and gives oscillations at very short times.
These oscillations provide information about strong correlations between excitons. Thus, the
bound biexciton dynamics is directly linked to non-Markovian effects. By contrast, in the long
time limit (t > T2), memory effects are lost and MFA results approach the real part of the
first term in equation (7). The FWM signal becomes dominated by non-radiative dephasing
effects, producing in this way a simple exponential decay.

In order to assess how the main features described above are reflected on the optical
dynamical characteristics, we plot the non-linear FWM intensity |P(3)(t, 0)| in figures 3(a)
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Figure 3. �xx = 0.125 meV: (a) time resolved FWM signal; (b) phase dynamics. �xx = 0.5 meV:
(c) time resolved FWM signal; (d) phase dynamics.

and (c), and the dynamical phase �(t, 0) in figures 3(b) and (d), for dephasing rates
�xx = T −1

2 = 0.125 and 0.5 meV, respectively. To better illustrate the results, a comparison is
made between MFA and X–X results on the same plots. For a low dephasing rate (T2 ≈ 8 ps),
strong oscillations are clearly seen in figures 3(a) and (b) for t < T2. The X–X interaction
induces a π phase shift with respect to the incident electric field. The phase of the P(3) signal
oscillates during a typical time T2. The FWM signal shows a strong peak at t ≈ T2/4 whereas
it should have a maximum at t ≈ T2 from MFA. For high dephasing rates (T2 ≈ 2 ps),
figures 3(c) and (d), the attenuation of both the intensity and phase of the third order optical
signal is evident. At this timescale, the T2 dephasing time is shorter than the time for which
coherent effects could be seen. It is worth noting that while the phase shows a similar starting
behaviour as compared with the low dephasing case, the FWM signal intensity is drastically
reduced by roughly a factor of five (notice the change of vertical scale).

Most importantly, the phase dynamics exhibits novel features at small times when exciton–
exciton correlations are considered. By contrast, MFA results yield to a real P(3) for any time.
Therefore, no phase dynamics is observed within MFA. In particular, X–X effects present a
correlation between the first FWM signal minimum and a π jump in its phase. For long times
the phase goes to a constant value. However, after the extinction of the FWM intensity, there is
no longer a clear physical meaning for this phase. Hence, oscillations in the phase dynamics,
with a beating frequency controlled by the biexciton binding energy, could bring important
information about exciton correlations in SQDs. In contrast with higher dimensional systems
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(quantum wells and bulk samples), an SQD provides us with an adequate system where exciton
and biexciton discrete energy spectra can be tailored by changing the confinement potential.
In this way, optimal conditions to enhance phase memory could be explored.

4. Conclusions

In summary, we have studied the non-linear optical response from multiexciton complexes in
an SQD. For cross-polarized excitation, the creation of bound biexcitons is possible. They
dominate the non-linear polarization dynamics in the low density regime. The phase dynamics
and the FWM signal in the ultrafast scale of time have been obtained. By including all
the numerically determined biexciton states, exact exciton–exciton correlations are evaluated
allowing to go beyond simple MFA results. In particular we found that the phase dynamics
and the FWM intensity oscillate with a period which coincides with the inverse of the bound
biexciton frequency. We demonstrated clearly that the usual mean field theory, which is closely
related to the Markovian approximation,does not describe correctly exciton correlations at very
small times. However, our results show that at long times, MFA results for both intensity and
phase dynamics are close to those produced by a more realistic calculation.
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